PRODUCTION OF HYDROXYL RADICALS FROM PARAQUAT RADICALS AND $\rm H_2O_2$

Christine C. WINTERBOURN

Department of Clinical Biochemistry, Christchurch Hospital, Christchurch, New Zealand

Received 21 April 1981

1. Introduction

The herbicidal action and toxicity of paraquat (PQ^{2+}) involve its metabolic reduction to the paraquat radical (PQ^+) and subsequent reactions of the radical [1-4]. PQ^+ reacts very rapidly with O_2 to give $O_2^ (k_2 = 7.7 \times 10^8 \text{ M}^{-1} \cdot \text{s}^{-1})$ [1], and it has been postulated that this reaction, and subsequent reactions of O_2^- to give more reactive products such as singlet oxygen $(^1O_2)$ and hydroxyl (OH') radicals, are the basis of its toxicity [2-5]. However, whether 1O_2 can be produced from O_2^- in biological systems, and whether catalysts required for OH' production are available are still matters of speculation [6-10].

This paper describes a reaction between PQ^{+} and H_2O_2 to give OH^{+} :

$$PQ^{+} + H_{2}O_{2} \rightarrow PQ^{2+} + OH^{-} + OH^{-}$$
 (1)

It is shown that the reaction does not require a metal catalyst, and is very fast and able to compete with the reaction of the radical with O₂. The requirements for OH' production via this mechanism should be met in biological systems, and the reaction could play an important role in paraquat toxicity.

2. Methods

Paraquat radicals were generated by the reaction of xanthine oxidase (4×10^{-3} U/ml) with xanthine (0.2 mM) and paraquat (1 mM). The reactions were carried out at ~28°C in closed 12 ml tubes, in 0.05 M phosphate buffer (pH 7.4) containing 2 mM methional, and 0.3 mM H₂O₂ where indicated (total vol. 2.5 ml). At intervals, 0.4 ml gas samples were removed and the ethylene concentration measured as in [11]. All biochemicals were obtained from Sigma (St Louis MO)

except for superoxide dismutase from Diagnostic Reagents (Oxon).

3. Results

Xanthine oxidase was found to catalyse electron transfer from xanthine to paraquat. Anaerobically a blue solution with the absorption spectrum of $PQ^+[2]$ was produced, but on introduction of air the colour rapidly disappeared due to the reaction of PQ^+ with O_2 . When the enzyme reaction was carried out anaerobically in the presence of H_2O_2 no PQ^+ formation was detected, and H_2O_2 introduced anaerobically into a solution of PQ^+ caused the rapid disappearance of the radical.

The reaction between PQ⁺, generated anaerobically by the xanthine oxidase reaction, and H₂O₂ caused the production of ethylene from methional (fig.1). Ethylene production from methional, provided it can be inhibited by OH' scavengers, is usually indicative of OH' production [12]. Benzoate (15 mM and 30 mM) gave 50% and 72% inhibition of the reaction and 30 mM ethanol gave 30% inhibition. With no obvious mechanism for forming other sufficiently reactive radicals in this system, OH' radicals are therefore strongly implicated. In the absence of PQ2+ or xanthine oxidase, very little ethylene was produced (fig.1). Omission of H_2O_2 decreased the rate to ~15%, and this reaction was a further 95% inhibited by catalase (1000 U/ml). Recrystallization of the PQ2+ from aqueous ethanol did not alter its behaviour. The rate of ethylene production did not vary over 1-4 mM methional, indicating efficient trapping of OH radicals. The rate of ethylene production was ~80\% of the rate of PQ generation (measured as cytochrome c reduction) under comparable conditions suggesting that most of the PQ formed gave rise to OH.

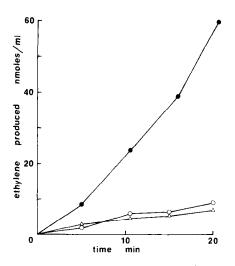


Fig.1. Ethylene production from H_2O_2 and PQ^+ . For experimental conditions see section 2. The rate of enzymic PQ^+ formation was 4.2 nmol . ml^{-1} . min^{-1} , determined in a separate experiment measuring cytochrome c reduction under similar conditions: (\bullet) all reactants present; (\circ) no xanthine oxidase; (\diamond) no paraquat.

The reaction did not appear to depend on trace metal contaminants. Diethylenetriamine-pentaacetic acid (DTPA), the iron complex of which is a poor catalyst of OH' production from O_2^- and H_2O_2 [13], did not inhibit ethylene production from PQ^+ and H_2O_2 , and addition of up to $10\,\mu\text{M}$ Fe²⁺ in the presence of DTPA caused a $\leq 20\%$ increase in rate. This contrasts with a much greater effect of Fe²⁺(DTPA) on OH' production from O_2^- and H_2O_2 (table 1). Likewise, although $10\,\mu\text{M}$ Fe²⁺ gave a 7-fold increase in rate of ethylene production from O_2^- and H_2O_2 in the presence of EDTA, it only doubled the rate with PQ^+

Table 1

Effects of chelators and iron on the rate of ethylene production from H₂O₂ and either PQ⁺ or O₂⁻

Chelator	Fe ²⁺ added (µM)	Rate of ethylene production (nmol . ml ⁻¹ . 10 min ⁻¹)	
		$PQ^{+} + H_{2}O_{2}^{a}$	$O_2^- + H_2O_2^-$
_	0	34	
DTPA (0.2 mM)	0	63	5
	5	70	11
	10	75	19
EDTA (0.2 mM)	0	75	9
,	5	105	38
	10	150	63

a,b For reaction conditions see section 2. Reactions were carried out: ^a in N₂; ^b in air in the absence of PQ²⁺

and H_2O_2 (table 1). However, both DTPA and EDTA approximately doubled the rate of ethylene production from PQ^+ and H_2O_2 (table 1). EDTA also increased the rate in the absence of PQ^{2+} but DTPA had an effect only if PQ^{2+} and xanthine oxidase were both present. Since ethylene production in the presence and absence of DTPA was dependent on the same factors, and because DTPA suppresses contaminant metal ion-catalysed OH production from H_2O_2 and O_2^- [13], experiments examining the effect of O_2 on the paraquat reaction were carried out in the presence of 0.2 mM DTPA.

In the presence of O_2 the rate of OH production from PQ^+ and H_2O_2 was substantially decreased. It decreased gradually as the O_2 concentration increased, but even in air, the rate was ~ 3 -times higher than in the absence of PQ^{2+} (table 2). The slightly higher rate of radical production by xanthine oxidase in the presence of PQ^{2+} is not enough to account for this difference. Superoxide dismutase inhibited the reaction in the presence, but not in the absence of O_2 (table 2). Inhibition by $10 \, \mu g/ml$ SOD was almost complete in air, but was somewhat less at lower O_2 concentrations.

OH' production in the absence of O_2 was decreased to ~15% if no H_2O_2 was added. Introduction of O_2 , which should react with either xanthine oxidase or PQ^{+} and give rise to H_2O_2 resulted in a sharp increase in OH' production (fig.2). This rose to a maximum with increasing O_2 concentration and declined gradually as normal air concentration was approached. Superoxide dismutase was inhibitory in much the same way as with added H_2O_2 (fig.2).

Table 2
Effects of O₂ and superoxide dismutase on OH production from PQ and H₂O₃

% O ₂	Relative reaction rate		% Inhibition by
	1 mM PQ ²⁺	No PQ ²⁺	10 μg/ml super- oxide dismutase
0 (N ₂)	100		0 ± 10
2	70	4	70
6	32	3	80
20 (air)	9	3	86

Reaction conditions are described in section 2, except that 0.2 mM DTPA was also present. Air/ N_2 mixtures were made by filling the tubes with N_2 , and using a syringe, replacing a known volume with air. Rates of radical generation (cytochrome c reduction): 1 mM PQ²⁺, N_2 50 nmol. ml⁻¹. min⁻¹; 1 mM PQ²⁺, air 3.6 nmol. ml⁻¹. min⁻¹; no PQ²⁺, air 2.3 nmol. ml⁻¹. min⁻¹

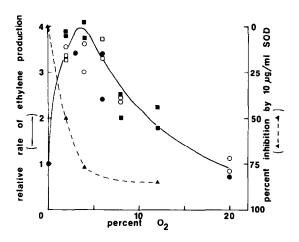


Fig. 2. Effects of O_2 and superoxide dismutase on OH' production from PQ^{+} generated by xanthine oxidase in the absence of added H_2O_2 . Reaction conditions were the same as for table 2 except no H_2O_2 was added. $(\circ, \bullet, \Box, \blacksquare)$ represent results obtained on 4 occasions.

4. Discussion

These results provide evidence for a reaction between H₂O₂ and PQ^{*} that produces OH radicals (reaction (1)). No requirement for a metal catalyst was found, contrasting with the analogous reaction involving O_2^- [13]. In biological terms, therefore, this reaction provides a mechanism for producing OH' radicals from PQ2+ without the need to invoke the existence of a suitable metal catalyst. The reaction of PQ with H₂O₂ appears to be very fast and able to compete with its reaction with O2. Competition between these reactions reduced the yield of OH', but even in air the reaction between H₂O₂ and PQ⁺ was detectable. Because PQ+ reacts with O2 very rapidly, it is often assumed that other reactions of PQ+ in air can be disregarded [1-5]. The reaction between PQ* and H₂O₂ appears to invalidate this assumption, and especially in partially deoxygenated conditions direct production of OH from PQ is likely to occur.

In the absence of added H_2O_2 , OH' production from PQ^+ was very low unless O_2 , which could act as a source of H_2O_2 , was present. As biological H_2O_2 production depends on O_2 metabolism, biological systems should also require O_2 for this reaction. At higher O_2 concentrations the function of O_2 as a source of H_2O_2 was overshadowed by its removal of PQ^+ via reaction (2), and the stimulation of OH production was replaced by inhibition:

$$PQ^{+} + O_{2} \rightleftharpoons PQ^{2+} + O_{2}^{-}$$
 (2)

Although OH' production from PQ^+ and H_2O_2 was not due to O_2^- , the reaction in air was inhibited by superoxide dismutase. This is analogous to the effect of superoxide dismutase on reactions of a number of semiquinone radicals with cytochrome c or methaemoglobin, and can be explained if reaction (2) is reversible [14,15]. Superoxide dismutase, by removing O_2^{--} , can displace this equilibrium to the right and indirectly inhibit reactions of PQ^+ . This finding has the important implication that inhibition of OH'-dependent reactions by superoxide dismutase does not necessarily imply participation of O_2^- .

Paraquat toxicity is dependent on a variety of factors. Reduction to PQ^+ is an essential step, O_2 is important, H_2O_2 appears to be involved, and there is some evidence that superoxide dismutase is inhibitory [2-5,16]. Lipid peroxidation, and other evidence suggesting free radical involvement, has also been observed [3,5,17]. From the data presented here, it is apparent that all these features can be accommodated if the toxic mechanism involves OH production from PQ^+ and H_2O_2 . Firstly, production of OH radicals should initiate tissue-damaging reactions [6,7]. O_2 would be essential not as a source of O_2^- but of H_2O_2 , and superoxide dismutase would be protective by removing PQ^+ rather than O_2^- .

Production of OH' from PQ^{\dagger} and H_2O_2 may therefore be of major significance in paraquat toxicity. A further implication of these results, however, is that the effects of the PQ^{\dagger} radical cannot be assumed to be the same as the effects of O_2^- , and paraquat-induced tissue damage cannot therefore be considered as analogous to oxygen toxicity.

Acknowledgement

This work was supported by a grant from the Medical Research Council of New Zealand.

References

- Farrington, J. A., Ebert, M., Land, E. J. and Fletcher, K. (1973) Biochim. Biophys. Acta 314, 372-381.
- [2] Kosower, E. M. (1976) in: Free Radicals in Biology (Pryor, W. A. ed) vol. 2, pp. 1-53, Academic Press, New York.
- [3] Dodge, A. D. (1977) in: Herbicides and Fungicides: Factors Affecting their Activity (McFarlane, A. M. ed) pp. 7-21, Chemical Society, London.

- [4] Hassan, H. M. and Fridovich, I. (1979) J. Biol. Chem. 254, 10846-10852.
- [5] Bus, J. S., Aust, S. D. and Gibson, J. E. (1977) in: Biochemical Mechanisms of Paraquat Toxicity (Autor, A. P. ed) pp. 157-174, Academic Press, New York.
- [6] Fridovich, I. (1975) Ann. Rev. Biochem. 44, 147-159.
- [7] Halliwell, B. (1978) Cell Biol. Int. Rep. 2, 113–128.
- [8] Foote, C. S., Abakerli, R. B., Clough, R. L. and Shook, F. C. (1981) in: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase (Bannister, W. H. and Bannister, J. V. eds) Elsevier/North-Holland, Amsterdam, New York.
- [9] Fee, J. A. (1980) in: Metal Ion Activation of Dioxygen (Spiro, T. G. ed) pp. 209-237, Wiley, New York.

- [10] Winterbourn, C. C. (1981) Biochem. J. in press.
- [11] Winterbourn, C. C. (1979) Biochem. J. 182, 625-628.
- [12] Cohen, G. and Sinet, P. M. (1980) in: Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase (Bannister, J. V. and Hill, H. A. O. eds) pp. 24-37, Elsevier/North-Holland, Amsterdam, New York.
- [13] Halliwell, B. (1978) FEBS Lett. 92, 321-326.
- [14] Winterbourn, C. C., French, J. K. and Claridge, R. F. C. (1978) FEBS Lett. 94, 269-272.
- [15] Winterbourn, C. C. (1981) Arch. Biochem. Biophys. in press.
- [16] Autor, A. P. (1974) Life Sci. 14, 1309-1319.
- [17] Bus, J. S., Aust, S. D. and Gibson, J. E. (1974) Biochem. Biophys. Res. Commun. 58, 749-755.